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ABSTRACT

The problem of the mathematical consistency of a field theory
defined by a given local Hamiltonian is studied in terms of the,

propagator (Green's function) formalism.

It is necessary for the mathematical consistency of a theory
that all the branching equations satisfied by its propagators be
covariant unier the transformations of its renormalization group
(which can be oxplicitly written). This analysis (which differs in
method, but not in principle, from the standard renormalization
program) permits to find systematically and explicitly all the terms
that need be added to the original Hamiltonian if this was not
complete to start with, i.e. if covariance could not be secured for
the set of branching equations obtained from it alone.

Local non-renormalizable theories are mathematically meaning-
less, because they originate from only fragments of Hamiltonians
which are meaningful only if taken as wholes; the missing terms
(even if infinite in number) can be exactly reconstructed with the
present method, which leads naturally to identify the concepts of
mathematical consistency and of physical completeness. All meaning-
ful relations among coupling constants, such as symmetry requirement:,
must remain invariant under the renormalization group, which plays a
rble as important in the search for completeness, as that of the
gauge group in electrodynamical problems.

For the sake of concreteness, and as a first example, this
method is illustrated with reference to the study of the standard
meson-nucleon couplings, scalar and pseudoscalar,neutral and charged;
the well known ‘f‘ and ‘f4 (scalar), "P# (pseudoscalar) terms are
obtained(a precedent erroneous statement about the renormalizability
of the neutral scalar coupling is corrected, so that now all results
agroe with the expected ones).Another example is treated in the
Appendix.
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I. - Introduction.

(l)a rigorous theory of renormalization wac
developed, in which ultraviolet divergences were recognized to beo a )
nomenon typical of hyperbolic equations and well known to mathemati-
" cians since a long‘time(z); the replacement of ordinary integrals
with suitable generalization of Hadamard's finite-part integrals wa:s
shown to be all that is required to perform correctly the transi-
tion from the unrenormalized to the renormalized theory. No u.v.
infinities or ambiguities can ever occur with this method, no writ-
ing of counter-terms is required, in particular the introduction

of "proper" self-energy or vertex parts (which destroy the linearity
of the theory) is totally avoided.

What happens is simply that divergent quantities are replaced
with indeterminate ones, which are fully displayed (as is done with
the arbitrary constants of distribution theory, which is comprised
within the scope of our work); it is then required that such inde-

1. In previous works

termination be of no physical consequence, exactly as is the case
for the gauge in electrodynamics. '

This is achieved by imposing, first of all, that renormalizatio:
(bars denote renormalized quantities; |, A,..- - Ax are the para-
meters of the given theory: masses amd c;upling constants) should
not change the values of the elements of the U matrix:

(1) M”()\.---M) = MFI (;\"“.L)

(3)
This criterion, which is the keystone of Dyson's treatment of the
subject, permits, through an appropriate use of combinatorial tech-
niques, to derive the differential equations of the transformation
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which changes L{ into -4£ ; since this transformation changes if
the finite~-part integration preséription is changed, we may speak of
"renormalization group" (under the change of prescription, i.e. of
the indeterminate quantities mentioned before). To secure that no
physical consequences are caused by this indetermination one must
require, indeed’that all the equations among propagation kernels
(which fully define the field theory) be covariant under the renorms-
lization group: This condition suffices to derive the differential

equations of the transformations. Our analysis gives also equa-
tions for the so-called "wave-function" renormalizaiion constants,
which fully determine them; no such constants are instead required
for "vertex parts" of various specifications (the latter constants,
which are typical of the standard treatment, could be trivially
computed a posferiori with our method, but are of no interest for
our purposes).

As a rosult, it was found that Dyson's heuristic conmditinns for
the remormalizability of a theory are fully confirmed as necessary
comditions by our investigation in the case of the so-called "renor-
malizable"” theories. One discrepancy which was found, regarding
the neutral scalar meson-nucleon coupling, which was judged to be
non-renormalizable because it did not seem legitimate at the time
to assume the commutability of some non symmetrical finite-part in-
tegrations, was recognised later to be due to an excess of caution,
and is removed here. (The proof of the legitimacy of commting
f.p. integrals also in the case of non symmetric integrands is giver
in a forthcoming paper by B. Preziosi). The investigation of the si-
tuation that arises with "non-renormalizable theories" (according
to Dyson's rules} will come next in our program; it may vield some
unexpected results because, for instance, the Pauli principle causes
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manifestly tremendous cancellations among the divergent contribu-
tions,

The fundamental requirement H) amounts to imposing that, if
any number of quantities Q,\(to be measured experimentally) are
calculated witk,say, two different f.p. integration prescriptions,
one finds

(2) a?“: ,{(A.---Ax):,[: (A—."';\.n)

Suppose that the first K of the ,?n are functionally independent,
8o that

(3)

then the consistency requirement‘ among physical quantities (5
automatically satisfied:

'? ¥ fx,.,. (A.(Q.---.?n)l__,,“(Q‘...‘?“)):
f (At MRS

Our procednre secures that (1) is satisfied, and therefore (3 ) and
(4), if and only if the theory is "renormalizable" - or, as we may

(4

better say, consistent or "complete". While, say, dispersion rela-
tions work directly on relations of type (4),we have a parametriza-
tion A, ++» Ay which does mot favor any special quantity Q. It is
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apparent that 1, ... Ay are not to be considered as having the
experimental values of the quantities which they formally represent
in the ordinary fashion of writing Hamiltonians, but as indetermin-
ate parameters to be fixed a posteriori through relations ( 9); pres-
criptions may be found for which ,: 9.,---4(:2.( but this question
is not of interest in the present conmnection.

9 - An interesting feature of this mothod is that it permits to

assess, in a perfectly straightforward manner, by the simple use of
combinatorics and without the need of performing actual integrations,
which additional terms must be added to the Hamiltonian to render it
complete if it was not such to start with. This comes about most
simply, because if those terms (the exact nature of which can be reco;-
nized immediately) are not included, i.e. if, equivalently, the res-
pective new branching equations are not considered, then it is impos-
sible to secure the wanted covariance of the field equations umder the
renormalization group.

This is not different, in principle, from the standard scarch
6f such terms which is made in order to compensate divergences with
counter terms; apart from questions of rigor, however, the techniques
that our method requires permit to deal with any situation in a fully
automatic and consistent manner, which is always the same and will
allow the immediate recognition of all possible interferences among
graphs(“)in situations, such as with Fermi interactions, which would
be otherwise hopeless.

The present work deals:with the case of PS and S, charged and
neutral, mesons coupled to the nucleon field. We have chosen a tho-
roughly familiar case, in order to exhibit the technique at its sim-
plest. The results which wo find are the well-known ones, that
renormalizadbiltity (for us, cogglgteness) roquires the addition of terms

Ae ¢ b and A,,‘{S + da p“ Tespectively, to the interaction.”’
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This should serve, in our intention, mainly as an examplo to
which we may refor in future in tho study of theories which aro as yoo©
unexplored. Tho rosults reported hore, however, will be of intorest
also from a dif ferent point of vies, that of quantitative analysis:
the coefficients of the differential cquations of our renormalizing
transformationc can in fact be actually computed, with as much approx-
ination as is wantod, and this will pormit to study the solutions of
these equations in a rigorous, even if approximate, way.

It should be clear that the knowledgo of the group propertics
at large, and not only locally, may open the way to a deepor unior-
standing of the structure of the theory, o.g. as regards mass spoctra,
or parameter quantization(if any such properties exist in the theory).
Hork in this direction is in progress, and will be reported on in duc

time.

In the Appondix wo give anothor oxample of the application of
this technique: givon two meson fields f: and 11 with coupling
.{u %’ f}' , the theory is incomplote unless the terms «414;9
and A, T: are added to the Hamiltonian. Numerical values for all suc
constants cannot be givon on the basis of the present, purely combina-

torial, analysic, but tho oxact form of the torms is immediately foun:.

]I;-Neutral P.§. Coupling.

Yo use throughout in this work the notation and the results con-
tained in our previous works om the %?EPGCt' Let us first try to do-
termine thoe necossary conditions forlgznormalizabilitwa tho psoudo~
scalar theory. If the Hamiltonian contains only the coupling terms:

T p———

(5) H -

RN




. ' -6-
We obtaln the following expressions for the kernels and their

dorivatives wit'h‘ tospeot to A - -»ff

WERID Yo

¥ /z’y, ( ’;"‘;{zf.--fr,)

The last equation when we separate the divergent from the convergent
part can be written (see II-3):

Woep, - i (I) R {)
) 2ken - f oo - Dhorp,
2A 0/{ §s K (f “ oo § ’ %’ra( A Z"_

or, introducing the "divergent cores"

| 9 ; u;f? Yé
) P b T 3 i (e B e

‘ (/% --xw, A (WA u)»\.
(9 2o = [ol] 5} f [ s _;,,,) (c VB G JHu,”
@A 4

+6s T:t +é " _77'9_5 (i )\C’(.'):\MC’(',:th) _fofu‘}"'/f‘(c m./

The eugation (lo))is found by observing that it suffices to -
consider in (8) only the tems which® satisty the relation:

(1) 3§+ <

that the terms with §-o0 , ¢ = 1,2 are zero because of Furry's

¢ If we compare this expression with (I1-26) we find that all but the
8‘ term of (10) are contained in (I1-26). This term comes from
which is not zero in the present theory.

_A—- X, "rllof,' .7" . 2
6 Ky, * (1 R A S AT e ) SR

L
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thoorem and the ... satisfy the conditions (which are easily . -

proved by actual computation)

(0 & x
C()f'” = (‘u [xﬂ + C, %Tﬁ

(1) A
(A) o ‘01\ w HY)
)( ) U 9m[

)= ¢ f"’”"f” Qly|
Cw(ic;z"?)mﬁfa/z [;yz‘fi{z’ij

Wo can now transform the kernol Ky, p, @8 folows:

KNoPo (/\.‘“[."‘:) = Aﬂaﬁ,(/l'ml'w':), E""fl(/l’w/'upy

and put
D = c*%\ «C(:)j _77;; - ét'{ _92;/
(13) e - -1 A Cf’,’f et
A"'P. A zz”' zsf'f

e S e i i 0

e KA 3 i e



Then following the same pattern as that of work II -~
from the (/0) we obtain the equations: oy

9(5 A):f.fj qu)zé"* ; @(/z,) ¢,
E0 Ty, <Juls g R 1kt + G 23 [T R (o

A"change of pnrameters;
,{: /\ {I 7;/ ’;h)
= (T 5 B)
"p m‘(I ’:‘:/ :'*7

(14)

by

so that !

(o OF)o B(m):o 9(;[/:212541

gives : ~ — [T - -
R (1) = & (7 )
and t’mfc'mns the iast’ ei;uation'of (14) in

(15) 5%, AL Y AR A PP & g T Ty

If we compare ‘the last equation with equation (1) we have to conclucc
that the ss:‘a%)?calar thoory, formulated in function of only threo
paramotors) d0es not satisfy the first condition of ronormalitzlfgwility,
This condition in fact requires (—J that the derivative of/ienwel «
with respect to T reduce to the formula:

o 2[R Tt

f

The Hamiltonian (5) which we have used is therefore not complote; w:

A — e
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must add other terms to it in order to rondor the pseudoscalar theory
renormalizable.’

- Comparing the equation (}5) with (#) wo deduce that it is
necessary to add a new torm to the Hemiltonian ( &); it is ocasily
seen that the interaction must change to:

19 H:g,fy5+f+;1¢‘*

no other additional term being permissible.
We obtain from (/6) the new kernel:

[ Y f f
Ku.&: SZE. f—l‘l—, %/)/f,-ﬂ/ﬂ XS' "’(Yf

Xl--)fa,f,--f,—' N 7 Q--Z;)’ .
A R R SRS i
(Y,"Y,{.Z... 5') [t:’ rﬂ 37 L.,,S, LIS Y w M

where

S5, = N

l The first sum is over all indices J, having the same parity as Pu,

[vem—w— RPN
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'
The derivatives ) :0f the kernel with respect to the four
parameters of the theory, coupling constants and masses, are .

‘18) 9‘(”,?‘, = f\ { XI“'XNo; -_f,
A s M(K‘--Yr/.f /”' P‘)

(19) m,., //ZK/; ff// /

- 0;‘
o) 2Kep o [y7 K(y ~/x,--fp/
71«/ /A

(27) %., //Z K/ ;;;/

1) The equations (18) (19) (20) (21) are correct as they stand if we
put (;{,»;{(N) | 1“7:,’("‘) ; when instead we put (;?):0 /[f}/—“»
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3- In order to separate the convergent from the divergent part
of the derivative of the kernel with respect to Al we write:

{ Ka

IKpp, = x ey i&’ /0/ 3 3 ‘{' Agh
;X.HP ;o:ﬂ ‘ﬁz::u 1! A ! ; /"’ Y - {5 D |
(22) o
) [X--Xw 3 B
X [ AR O A ;..;twr =6
o [ o

(continuation of footnote 1) of the preceding page)

the derivative of the kerncl with respect to 'N‘,L is given by (?/
only if all the expressions '

([t A2 (72.341] K(,X,,,/* M ”/

are taken to vanish (see ref. ‘.) «
The comvimbon (Hl:/‘.’(m)/ U{/ﬂm} (or (1) : ¢ (?]- ©
affects only the renormalization coefficients.One can use either de-

finfition provided care is taken . that the expression ( ¢ )
vanishes .{ [_Z(j = 0

et 15 R b,
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24--1

whore tho 2 aro dofined as in ( I ).

From a generalization of formula ( J-/f ) it follows .

e PR A
W - F s 4 "" /a/{ -~J;—[$('

R, Aekes A ‘
{ql w:i‘:ﬁ} P(“K) ?’("~- 7/'
£t 55 2 () / 2 T
(25) E‘ o % CL‘ L‘; ( 7‘(:—‘ f‘(’.( EC,' chrj

K”} ({‘n—'&' X~ =X

0 ‘n"';d fl-'fib
7«'7"7'(JX">{W Z' i
()

or, denoting with (.59%)‘ bhe contridutions coming to from
o

difforent values of S, ¢

(1
(” XNJ gk"fb
/i rf Z’L‘ - I-PI + > 74,
y_ -/” ; SI*’J N
(%) B
whore the sum is over all values 5, ¢ satisfying tho rola-
tion:

15+

The terms with 8«0 @=1,3 are zero

v ey S P bt i !
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v s orpon e+

Wo can define the "divergent cores":

V| "Vh

/\l v‘_“:'
(25) é)(i‘ .

whore we have put :

{t. “4.’|_.l

hond. g S :.L Ade Dy gt
L(é"“,”}liw' ) £' ﬁ" ‘ { ? r’ '
(2¢)
lz."du 3{" -
The sum is over all (. with the samo parity as m+{ . By

means of ( 75 ) and (T-24), ( I-2f), wo obtain immediately

()
2\
(9/\ ), 5 (:‘7"’ ‘(”‘Fo
3)
(27) 2 A
(3{-);_ n. i /l/t l ‘7/{ P{”“"’ Is" ‘h-

(y.--m. ?.-—?”o) s é'\' (m m.",)[;v! -

Yo=Y, 20 --Tws) cr

f" i1s the sum over all combinations of Po*‘”: *4”7. :?7'42 Lnaé'a._'
Y ‘




({) LN f 1 ' " B -
(Bt =55 o fro s &5 i)

Boebiay lupd ! l i 1] '
. l_t "ff: f‘ .’7"I1 [‘”NI {lm“ ;(“,“ Zl,"-~-._]
7K

)
h), o .
B iL d/] 1. " x; R A 4 12X TR
un( l S f“‘y LA MRS S
),

A, o”um/,.Ys Xq Z 3 e e [0 (u-n'..t( b
1 % i ’I" ”( P? ‘)' S ey! (\’w{ !Wﬂl | Vu‘:“'"’,:y)f(

Substituting (%) and (¢f) into ( ¢4 ) and using the formulag (/ ‘i‘n’, we
obtain:

{ (” X, - X, A wd, I)At
DK”O'Q_/’(? x; y x:{/?f,—’rp'J (Od .*‘J o + ,' ”) M";

(V4

Ol Y A 24,
(29) é;: 7&'—"4 'fc,u _D‘.(!_& ( )/‘ C,: /ll"'{,)‘;]ié t

[}

3

K:
fa.dl v con) 2,

; We can now go on as bofore, putting

K"‘Po A"np KNaP

uH. F(I)Al ‘
(30) C 1 ‘{L ‘ ‘lu:; v é'(; 2,{ ll)/\: A .
? - C .l' - CO,{ P - Lo -—;l 4"( 4 Cog 'Ib)%“ / °

wo obtain:

?[f Aﬂaﬁ) + 'Aua,oo D 7(,,% =

A (', 4 DA | ) _— . Sy
(3’) — (C',‘ _f__ ” ) Ku,f‘ + ; ' " .
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that is:

. 9
(32) ?(J/AMP,)’C: +c’;:l’:,, + G No

(33) ANP 3'(':.,9 "Alloﬂf-rljo/; /s (X :: /Zk"/f}

The formulas ( 7¢) amd ( 33) become:
W A {1} 41

Ual-co  BlHC B
(34 )
24P K, =4 AR ( ,;/“' f?,)

whore we have used the standard notation:
N _ B

- 2

AM' = A, ZJ

A change of paramoters: _

/‘; - AI {I,’;II'M-,‘L'/';,)
(35) do s Aa (T o o e)
wp = mg (%, T, M)

1"‘: = m: (’T' ] ;l ',::"/T")
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gives:

b st AL B PR P8 3-8 i e I

K (homp ) = (10 50 52 ;

o L e e

and transforms the last equation( J4 ) into

2, 4 7;7[

o(T.) 2 J Koo = J:/{ = {x,--x,,, ]
(3‘) 73—‘" P’ K y"_yﬂgili{'c"‘-’i)i)

- — 7 ::1 .2_’
- 271 [9(/\)-7%{» + $(’"/)"" + D ")9;,‘ B

The theory will bo ronormalizadle if a transformation ( JJ5) exists
such that its inverse satisfies the equations:

o) = 2.2

Y my) = 0
(37) D(my) =0

SA.) =0

and the other equations obtained simllarly from the derivatives of
kernel with respect to other parameters. If this happens eq. ( 34 )

i v e s



becomes:
(36)

and the
will

()

-17 =

2K = b [l z‘.-'rfa)
T J:/Z s K{%'"Yr/.?/i

derivatives of the kornel with respect to the other paramotex:
change similarly into the following expressions:

v

— —lea{ ‘)
o T )
J"?{ x"'YIIa7 }‘ f

Ol
t(\}:\
X

hod LB
§|) i
T e
L1}
\¥
S\
_—
=1
r\u\\'
> X
\ \
N
T &
\-’
\'\.~
~N
:‘\
§
]
~p
>

N PO
>-\‘;< )
) =
L"“ﬁ
=
N
=
_—-h\.
= >
1’ .
N
—_—
~u
gy
-~
’\
N~
'
3*
\\\5_"

)

The kernel for which ths perturbative expansion is obtained

by means of the substitution of "finite part" integralsinto ( 1'%)
is a formal solution of (39Y) if we assume that all f.p. integrals

commute

in a multiple integration. (See footnote at page 22).
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A- To complote our knowledge of the system of diffbrential equa-
tions which change the unrenormalized into renormalized parameters,

wo must computo also the derivatives of kernelswith rospect to all
the other parameters. By separating tho convergent from the divergert

parts we obtein: “ ; " 1 i
{ X:w"t/ 2 . i
Wast - - o | ‘.+)4z/ ) oloc: |

Ime ) /ﬂlg {”"Yllo { j* f 5 7‘/ (;‘5,;‘75

t)

0 sy ) B B, v

) |
Yo (4] x“(;f.’;;a]ﬁ({h'-*n)*fr(}zif, LG

934

Wo define the "divergent cores*":

LI FR A '14"‘,‘0".7‘ ”.-J/..)
M Tl

g g Jat k)
(1) CU«)(;:, 5 B P;L(:"_’j““luj,..@f{i{)
d Ao
) 9‘:]”_["! KO, w {1

7 et s i e b C - - Werv e we e ¢ e - PR ————
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}) ¢
- [9K " /) My
(BZJI Cao K j (L K) = Gy Yrp

7“51. ’/t 7 M.

oy q )h7 " “ ,,,A mh! H.,)k
(ﬁ) Goo b, | ()K )( o )(lj ok sl

e

7):

) Ujoo ?)“ 0 ’)'

)

w 4“ (.m

| | e L2 G, Kt s
2 ) C)u Won, - :)_&_<_ f; kG, K,/.f,*ﬁh —-JJ' t 71
24/, 4o 2Au } 9"""11 ? ‘ +C¢’ ‘25!":2-

Y om

b
where wo have used the conditions:

) o ; ] <§"‘“ _(,"f 2. %)
¢ u.ut) 7,, / (y) pm/

(u(:«) u-.) z ‘:iq E‘o Uy + hlh 7[‘7:“1] } C(A[“ H J;/Z(“ {)&‘{wjf ;7
(43) | @)y
é)‘m “1.“., “o th J—/Z[‘f. ‘z “5 " IHJ c.‘b( ) (3 (Kl V| C;,, é_,,

kS
R

The equation;( 40 ) become: thus:

D' Ky, = CoF Kup, -ij'a/{K X); }/ r‘,,)

o Kun - [HTK (5. [iit--t)

'(::*”" ) "::A)‘(""r +Ja2 K(y ym/m(% *

\

D" K,

®M VN’&

(44)
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where:
?' cﬂl > - e":( 2 CW{: 7‘ “’”(
Ty t Iny )
] My b "y
(‘g)ﬁ:('__f_, / («z"‘(::z
L
p]
0" ,)J(, (')'I‘ (J’la Ay c 4}
®‘: CA“;A?—- - é: a%'—at - (,‘, 7”,& ’/ C’a ‘f"(l w 1&4 :i";
A (A A
C - /" ?/‘4 ()q,_ “4"

Procoeding as beforo wo obtain casily the other equations of the

transformation from unrenormalized to renormalized parametors.

From the first of the ( 44 ) we have:
Dleg) = 7t
Do) =

( 4¢ ) ial{;')'
ia{};) =0

from the second:
D (my) <0
D'(wy) -2
(41) DA):o0
@“[L) =0

and from the last:

VR
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D'iy )= o

%m(m,,‘} z0

9'(1.) =79

%”'(/Tu) - Zsz

We can conclude, keeping in mind tho oquations (37 ), (4¢), (471)
and (4§ ), that the theory is renormslizable if the following system
is compatible:

o(f,) =7 2" By )0 |Bat)ze M. ) =0
(A =0 | Dly) =2 Plny) =0 D)0
| @”(I,) ol } ?"(‘EZ) 0 | 9" Ry = 24 / ﬁ"(,{‘“) =1

(49)

(49)

The conditions of compatibility are:
LY My
" (','n .t 0 f- [);'1 :tﬂ
A
A A A }hl/'q ¢
PR T ARy R P AR

{

0 Ae (ida A ‘
LIV LD VI Lot 2
‘—(2)“ é"n.‘ + Oy }(—éz-' C’p’t +Q° 14 /') ,‘;f /j

These conditions are genorally verifioed except for particiilur valnes

of the parameters which would make all the rolatiozn 1o (33; vanish

st
1 e s o —————————

;.9'"0. ) =0 33'“(»1,‘} 47 $*?';1_;) -0 C)M(Iu) 23
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III Scalar neutral theory

We start from the Hamiltonian:
H=gt +f
we can define the kernel k@qg and its derivative with respect to

:~t'8 .

the
After soparating. the divergent from/@bnvergent part we obtain an
equation like (8). In this case the sum is over the terms (257”‘7
with A (e

we

S « ¢ 0~ -
S =1 -0
S -« 0 6~ - 2
S,-O ‘v_4
S -1 ¢ -1
which we have already discussed, and over the divergent term 1) with
S -0 o =3 (51)
pooy
1so. ’
880 of the
Following the same pattern as that/b.s. theory we can easilv s8ii
_2)

that the scalar theory is renormalizable °, provided two now

1) The divergent term S=0, =1 must be put equal to zerc if (fi)-o
[}{1 - 0. If instead we put (33%) -ﬁm;, : ;[7{]..3(,0 ' the co.
S «0 0~= 1 does not lead to new terms in the Hamiltonian but onl:

affects the renormalization coefficient.

2) This occurs only if all f,p. integrals commute in a mﬁltiple intu-
gration, vhether the integrand is a symmetric function of its

o A i i

AR cobagpe et on B
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terms are added to the Hamiltonian, which becomes{

2) b Frp 2 e’ ot
The kernel is the following:
w00 W S St Absa .
KN’Fo— > = X 1{'—- ‘Aff‘, ‘S‘;‘T j”/;c /0/;,/
()
Yoo Xas BTy ) ‘
o YRS KAV N

] -.l s" s’S‘- SI'S\"I S:'Sl‘/ Ypafy ot - Y
y’". 7ll/v }," r‘o ‘s ' _ ' ‘
The sums are over values S, and S, for which €.+ 355 has the same
parity as Po .

The derivatives of the kernel with respect to the parametors are

given by:

)

Qoo = [ K[V 10t

{cont. of footnote N° 1) of tho preceding pago)

variables or not. In our past work (E.R. Caianiello, M. Cimento, 14,
185 (1959) ond of sect. 4.5} it did not seem legitimate to assume thi.
oroperty a priori, hence it was concluded that this theory is not re-
normalizable. More recent investigations7). however,have Jiven assur-
.ance that such inversion is always legitimate in the cases of

physical interest. We arc thus now in complete agreement with the

current opinion on renormalizable theories, at least as far as

necessary conditions are concerned.

b e B8 4 sk e gk e ¢ S aen 0 e e —————— W o2 )
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m /J?K / ;: f"f°)

lﬁy( - Xy~ -XWy | o e
K «/{K(, yllo ZM“/}"

Az -7, Ayz-vg A =m0 g,

1V, - The charged mesonic field.

The formal study of the charged theory follows the samc
Dattern as that of the neutral theory. Let us consider the Hamiltoniw

of the charged pseudoscalar theory: :
. ) ~ WM
(55) Hag 1 et 4001 peias

where:

L0 I S 1) FE SR )

Xeeping ir mind the rclations:

/5.6) ’(; ,P = gl Tl YP = . e, T‘} —VP Py 1?) ?;, FL'.U
* ?"T/" - 3’- ‘)"1 'rv:: "f' T} 'T\.:-T\, tﬁ ao

P ]
s v~



C
& §
2:d the form (55) of the Hamoltonian one finds that the kernel and its
Zerivativea have the expressions:

/a’f /a/fi/z = 33'7,2.'-?&,

rke

(; %v; 5“- 7;)[ "7’ A h s'.?s-]'* Tl
s = it T (1 )
0 oy e )
Lt - - [ K/ ';x,”,“/ﬁf )

L, - -Xu,
2—’(—'%: e /0/; K(}'/_}/Nu/ff(('t'“‘i}',)

where ) P "J, ) /‘u :-f‘/

l

Kiop, -
'I’r’g S S,_ S‘l

) ) ({{) ) ﬁr +T ){; '77‘ (}’(),, and [? ?’,‘Jﬂ are the free pro-

pabators for nucleon and pion ro:
an b [:%] " poctively; (~6 + ) (%, g

is the —dimensional matrix

K(in o
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Lot us separate in the second of the equations (57) the divergent fro:

the convergent part, using the same notation as in the neutral case;

Wf obtain: » i)
- oK t 70 ( o Ko 3 _-l') =y (

(Jﬂ} ;;{i «fr/f ,g Y K Y- = Yyo {/{‘L' P r!f -7—[54»
o can introduce the divergent cores:

4

{¢o) 5(")(;’““)“"{“',, i-) ﬂ{ Ry ::’f/{m)

Vu
where
J d f /'gl A 5; ﬁﬁh'z"?‘*::-z a'o._.x.
. Ui -- v ' . Ae_ g ‘
(6/) L V-_Jlg/?wl'-wl’):‘{ﬁ _S—:’T j‘l.{ / /': /fl' /“ij
(“' “" f’ :S,) LW ,.‘ ff.“ ?5. 75,4! f‘/‘l}i,-n ?5';*4'. (fYﬁ;N 5.
i--rufi -1,

These cores satisfy vhe equations (12) where the constant C do not
contain the matrices ?.'" explicitely. To s«¢ tlhiy GF w congdr
Cole;

S »- -l ~ Y

C e e , ;
i JE IV Ll e A AR
62} CK ﬁ{ Xg SZ‘ 52\- -g:'T 5, 91 yR re s,

(; f' . ?‘) [’ /‘Z;l 73! )Idlzvl f:ﬂ{#' i Z):):/’?J
f,--" 754

Jhere the first sum is over all indices $, having odd parity, and

oxamine the Mth term of its perturbative expansion:

. ' Sa Nt ‘e .
’3) jd{ —?—; -AS—‘:" 92 E-'mzjdp(f"' {"‘*) Tria ¥ /i"s ;")7;-.. - -

g u,'k_'/[;.,zy]’-l?"iw-: f‘"oJ N

[ L o M?‘
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( 2.' means summation over all the permutations /- - "§+z
of 21%1--¢%, . P is the parity of the permutation
[ . f
. & means summation over all the permutations ¢, - ¢y, 0f -
1

g,1--§  vwhich satisfy the limitations -
Keeping in mind (58) and the commutation relations of matrices 7.,
the eteam on (64 bocomes:

<t [w, < 7“3 < ?""T'—

Wk iy

S St

(64) /0/7 4 Ae C,)'"'g(_qp.;(;m J;"/'v (7,,1'0)(;,«.7..,),0%---

ESY oo

oo J6"2 D] Lot 4]

where Ku, is a nuaerial coefficicuntv which depends on the matrioes ::
and changes whax: the parmmtation changas.

Hence like in the neutral case We have:

: A :M
éw Core G 9] + G 97@;"']
where C:): and (,y, do not contam natrices ' . We arrive at itk
seme result if we comsider <%, /C( H’,. < and so on.

Hence we can go on a8 in the previous case and obtain e
oquation formally equal to the equ. (36), the only difference is i:.
the numerical valuoe of the costants which are contained in the §9 .

In the usual way we can examino the dér_iva‘ti_ves of -
respect to parameters A“:m[..and 8o we obtain a sisten 1liko (49}. ¢
oxtending to this sistem the considoreotions made in the previous cacs.
we conclude that the charged P.8. theory satisfies the necessary cor-

I

T r——"—
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ditions for its renormalizability.

. ¥hat we have proved is true fogbthe scalar charged theory al: .,
A4
wo obtain the expression for the kernsl/ecliminating the T matricos
from (57).
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Consider two meson fiolds g? and yg (it does not mattc.
whether with the same or different mass), coupled by a term

(1) H=g¢e"

We got for the kernel the expression:

( .
- /‘ . ’.}‘7 o .‘ h
o T 2 00 /’/7"'/”/7( [t -t hl Aty e

(2 A
R AN
/) = -L.f
Consider:
MKt - ()7 K (},..1;‘ z’i/f,'-«ﬁf z’z’)
(3A) IA ’
Tho ~derivative of the kernel can be written !

L7 ( {"/
I, - = A / A (1) by
(4A) ﬁ.g = B d! %? K /ﬁ_.ﬁ,‘,;’}/{.-‘% 2)7

Tho divergent part is scparated as usual:

» Mu.ﬁﬁ
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{ -

(5R) gf_ _ /o/? ‘(((h N ¢ ff f;) ( )(f)

. where we have usod the oxpression:

2—‘(— = Z A ! fat At -
(Ch 24 Feo x'/” 9 ,Z. ‘3:. [”' ’7«:]/7‘ leen]”

Divergences can actually arise only if 5 + 0 < 4
and furthermore ¢ amd ¢ can have only even values. Therefore

;.;,-fa,{ x“ﬁ 4, 1] {z)/” /a«[ /;«,_
~ L &L

The divergent core is

( ») Cw(t"."tf,(f: ty) )a/{z/\ 9 [z.-emi ,,]r-'
[E-Ea180: I,

A

$o thfm , et »
K - P T i
(ﬁ) (‘, KF"P‘ (—;XLZ ('11. 7 (i

‘ A (2/\ kl
(‘;H 2 Coy Le Ky, ,,AC’" 7%(’?' + Con -92;’,5

VA
Bk, < ¢ fa L A

It
(w( f‘)_ )b_)'ofK(h A rfm)
(ﬂ;l“ = (., J”f K{f’ fp,f;)’; t/-.-}—,)

L}
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(7A) Decomes thus

A (IJA
9k' /q/g ‘( (,‘ *Po”/’u f’f/ (()' 4.(‘3:_ P. + G ﬁ)‘(r.
A A (14
(194) +{XC.:1 +/\ér.+fu) (:) + 0)2) T

+ef,]}/z Kkl 1tk - ) + € o [ 47 (1177018 )

which yields, with our customary treatment

2L = [ K 1t 18] #e )
J (M)*C’.i Pi K(h~-ﬁ'o/{ﬁ{ﬁ'---ff'z')* f‘:ﬁlz I((t~.7‘,)7//f//‘/’-.- '?’)

i.0., by comparison with (3-A), c¢ovarianco is not secured.
It would bo straighforward to verify that, if together with | /4)

two more terms aro added to the intoractionl

(124 H=ggtg! +f;f"¢72ﬁ‘*}

then two more derivative equations must be considered. and covariance

can be obtained (together with the equations of the renormalization
group) .
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